If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=289
We move all terms to the left:
5x^2-(289)=0
a = 5; b = 0; c = -289;
Δ = b2-4ac
Δ = 02-4·5·(-289)
Δ = 5780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5780}=\sqrt{1156*5}=\sqrt{1156}*\sqrt{5}=34\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34\sqrt{5}}{2*5}=\frac{0-34\sqrt{5}}{10} =-\frac{34\sqrt{5}}{10} =-\frac{17\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34\sqrt{5}}{2*5}=\frac{0+34\sqrt{5}}{10} =\frac{34\sqrt{5}}{10} =\frac{17\sqrt{5}}{5} $
| n2=400 | | -7r^2+2r+8=(10+7r-r^2)+(-6r^2-18+5r) | | -4(4x-3)+7=-16x+19 | | b/4+2=-1 | | 2x8=+17 | | 3x+43=x^2+3 | | 4.85+2v=7.85 | | (2x+10)+x88=0 | | 10m-9=51 | | (x)+(x+8)=172 | | s/3-5=-4.1 | | 47-3x+10=9x-39 | | v/3-1.4=1.5 | | -29=n/11 | | 7+8m=7(1-7m) | | 8-(-3p)=11 | | (2x+10)x88= | | (2x+10)x88=0 | | -12=-4(m-5) | | 2-2c=-10 | | 4x+5/7=19/21 | | n-4+2=22 | | w/4+9=5 | | 3x=14x÷3 | | a-(-7)=-21 | | 19=4b-3 | | 8x+16=-8x | | 50,000=1.5x-x+3x-70000 | | (8x-3/3x=2) | | a-(-)=-21 | | 6/7*x=12*6/7 | | x^2=225. |